
Predicting and Controlling Resource Usage in a Heterogeneous Active Network

V. Galtier, K. Mills, Y. Carlinet
National Institute of Standards and Technology

Gaithersburg, MD 20899-8920
�kevin.mills,virginie.galtier�@nist.gov

S. Bush, A. Kulkarni
General Electric

Corporate Research & Development
KWC-512, One Research Circle,

Niskayuna, NY 12309
�bushsf,kulkarni�@crd.ge.com

Abstract

Active network technology envisions deployment of vir-
tual execution environments within network elements, such
as switches and routers. As a result, inhomogeneous pro-
cessing can be applied to network traffic. To use such tech-
nology safely and efficiently, individual nodes must provide
mechanisms to enforce resource limits. This implies that
each node must understand the varying resource require-
ments for specific network traffic. This paper presents an
approach to model the CPU time requirements of active ap-
plications in a form that can be interpreted among hetero-
geneous nodes. Further, the paper demonstrates how this
approach can be used successfully to control resources con-
sumed at an active-network node and to predict load among
nodes in an active network, when integrated within the Ac-
tive Virtual Network Management Prediction system.

1. Introduction

Internet applications increasingly use mobile code, such
as applets, servlets, scripts, and dynamically linked li-
braries, to deliver new software to millions of users. With-
out understanding the processing (CPU time) required by
such dynamically downloaded software, computer operat-
ing systems cannot effectively manage system resources or
control the execution of mobile code. Unfortunately, since
mobile code can be downloaded and executed on a wide va-
riety of computer systems with a vast range of capabilities,
software developers cannot specify CPU-time requirements
a priori. This problem exists because CPU-time require-
ments do not depend solely on the processor speed of var-
ious computers, but rather on a complex array of hardware
and software factors.

We investigated how to solve this problem in the con-
text of a heterogeneous active network (heterogeneity im-
plies that the active network comprises a wide range of node

types with various hardware capabilities and software con-
figurations). In Section 2, we provide a brief tutorial on ac-
tive networks, and we summarize the factors that can cause
CPU usage to vary as an active application moves among
heterogeneous nodes in an active network. In Section 3
we motivate the need for a method to express meaning-
ful processing requirements for active applications. Sec-
tion 4 briefly reviews existing solutions and their limita-
tions. Section 5 outlines our approach to model and pre-
dict CPU usage, and introduces new measurements con-
firming our earlier results [7]. Subsequently, we exercise
this technique in two experiments involving active-network
applications [19]. In the first experiment, described in Sec-
tion 6, we compare the effectiveness of controlling CPU
usage in active-network nodes using two different policies:
(1) assigning a fixed CPU limit per packet independent of
node characteristics and (2) assigning CPU time per packet
adjusted to account for differences among nodes. In a
second experiment, we incorporate a CPU-time prediction
model into the Active Virtual Network Management Pre-
diction (AVNMP) system [4], a technology developed by
researchers at General Electric (GE) to predict load in a net-
work. Section 7 discusses AVNMP, and then in Section 8
we explain how we augment AVNMP to predict CPU usage
in heterogeneous active networks. We also outline an exper-
iment where we use AVNMP to predict resource consump-
tion by an active-audio application. Section 9 presents a
critical view of our approach and introduces ideas we would
like to explore to improve our work. We present our con-
clusions in Section 10.

2. Active network nodes, heterogeneity, and re-
source variability

Active-network technology augments traditional net-
working with the possibility that individual packets carry
executable code, or references to executable code. Each



Figure 1. Architecture of an active network
node

router forwards conventional packets on a fast path, while
delivering active packets to a higher-level execution envi-
ronment (EE) that can identify and run code associated with
the packet. Networking applications built with active pack-
ets are referred to as active applications (AAs). Figure 1
illustrates the architecture of an active-network node [5].

Underlying each active-network node is a node operating
system, which transforms the hardware into a software ab-
straction to provide EEs with controlled access to resources
such as CPU cycles, memory, input and output channels,
and timers. To permit various operating systems to pro-
vide services to various EEs, the node architecture includes
a standard specification for system calls (the Node OS Inter-
face Layer in Figure 1) [14]. Each EE accepts active packets
that initiate execution of packet-specific code.

Analysis of Figure 1, and real systems, reveals many
sources of variability affecting CPU usage by AAs [6]. In
the hardware layer, the main factors include: processor ar-
chitecture and frequency, available memory, and the speed
of various internal buses and network and disk interfaces.
Within the node operating system (OS) and node OS in-
terface layer, the factors include: performance of device
drivers, performance in managing processes and memory,
and the nature and performance of system calls provided
by the operating system. For networking system calls, per-
formance of reads and writes varies based on the specific
protocol stacks buried beneath the systems calls, as well as
the implementation of those protocols. Within the EE layer,
performance can be affected by mapping EE system calls
onto OS system calls, as well as by the compiler and op-
tions used to compile the EE. Finally, each execution of a
specific AA can go through any one of many program paths.
The path of any given execution can depend on data in the
packet, on the state of the node, and even the state of other
nodes. To properly estimate CPU-time requirements for a

given AA on a specific node, we need a model that accounts
for these sources of variability.

3. Why is it necessary to model the CPU re-
quirements of active packets?

In classical networks, each packet is treated the same;
thus, the CPU time required to process a packet includes a
fixed per-packet overhead and a per-byte overhead. Using
this knowledge, designers of an intermediate node can quite
easily estimate the CPU time needed to process a packet,
and can thus rate the capacity of the node in packets per
second. Since packets in an active network can include code
describing how to treat the packet, the CPU time needed to
process each active packet can vary significantly, and can
be difficult to estimate.

Inability to estimate the CPU time required by an active
packet can lead to some significant problems. First, an ac-
tive packet might consume excessive CPU time at a node,
causing the node to deny services to other packets (see re-
lated experiment in Section 6). Such excessive CPU time
consumption might be due to maliciously or erroneously
programmed code carried by an active packet. Second, an
active node may be unable to schedule CPU resources to
meet the performance requirements of packets. Third, an
active packet may be unable to discover a path that can meet
its performance requirements. This path selection problem
occurs in part due to the node-scheduling problem, but also
because the CPU time commitments of active nodes along
a path cannot be determined (see related experiment in Sec-
tion 8).

Devising a method for active packets to express their
CPU time requirements can help to resolve these problems,
and can open up some new areas of research. For instance,
Qie et al [15] explore the design space for scheduling the
CPU on software-based routers. This work relies on the
assertion that the cycle rate required by QoS (quality of ser-
vice) flows can be derived empirically from a specified bit
rate. However, our experience shows that in active networks
the number of cycles required to process each packet can
vary greatly from one node to another. A model such as we
propose could help Qie and colleagues to develop a signal-
ing protocol by which an application reserves a particular
cycle rate. Elsewhere, RCANE (Alexander et al [1]) allows
a user to reserve a guaranteed allocation of CPU, denoted as
a slice of CPU received over a period of time. For example,
if an application processes a network video stream where
packets arrive every 20 ms and require 0.5 ms to process,
then the application should request a reservation for a 0.5
ms slice of CPU time every 20 ms of real time. This ap-
proach supposes that an application knows how much CPU
time is required to execute its packets on each and every
node. A model such as we propose might provide the nec-



essary estimates.
Even though we concentrate on active networking and

demonstrate our ideas in this context, our approach might
also apply more generally for example to heterogeneous
distributed systems, where processes execute on nodes that
exhibit a wide range of computational capabilities. Our
approach should apply particularly to heterogeneous dis-
tributed systems based on mobile code, such as mobile
agent applications, and also to systems based on code
loaded from disk, such as distributed parallel processors or
web-based applications.

4. Related work

In this section we present existing solutions to prevent
excessive CPU resource consumption in active networks,
and we describe the limits of these solutions. Next we ex-
amine research conducted outside of active networks that
could help to solve our problem.

4.1. Existing CPU usage solutions for active net-
works or mobile agents platforms

In order to prevent malicious or erroneous active packets
from consuming too much CPU time, most execution envi-
ronments implement specific mechanisms. In this section,
we discuss the most common mechanisms.

Limit fixed by the packet. Some execution environ-
ments, such as ANTS [20], assign a time-to-live (TTL) to
each active packet. An active node decreases this TTL as
a packet transits the node, or whenever the node creates a
new packet. In this way, each active packet can only con-
sume resources on a limited number of nodes, but individual
nodes receive no protection. The current recommendation
for IP is 64 hops [16], which is supposed to roughly corre-
spond to the maximum diameter of the Internet. This value
might prove large enough for an active packet that propa-
gates a configuration from node to node between two video-
conferencing machines. But if the active packet creates nu-
merous additional packets (to which it delegates a part of its
own TTL), then the assigned TTL could prove insufficient.
And it is usually difficult to predict how many new pack-
ets will be generated since these predictions might depend
on network parameters, such as congestion and topology,
which can rarely be known in advance. This TTL mecha-
nism could contribute to protect individual nodes if the TTL
is given in CPU time units instead of hop count. But the
problem remains to choose the initial value for the TTL.

In the related context of mobile agents, Huber and
Toutain [9] propose to enable packets that did not complete
their mission to request additional credits. The decision to
grant more credit would be taken by the originating node for

its packets, or by the generating packet for packets created
while moving among nodes. The decision must be made
after examining a mission report included with the request.
The proposed solution was never implemented, perhaps be-
cause the reports proved difficult to generate and evaluate.

Limit fixed by the node. In some execution environments
(e.g., ANTS), a node limits the amount of CPU time any
one packet can use. This solution protects the node but does
not allow optimal management of resources. For instance,
imagine that a node limits each packet to 10 CPU time units.
Suppose that a packet requiring 11 CPU time units arrives
when the node is not busy. In this case, the node will stop
the execution of the packet just before it completes.

Restricted language. The SNAP language [13] is de-
signed with limited expressiveness so that a SNAP program
uses CPU in linear proportion to the packet’s length. While
this approach provides effective control of resource usage,
it could prove too restrictive for expressing arbitrary pro-
cessing in active applications. For instance, only forward
branches are allowed; as a result, if repetitive processing is
required, the packet must be resent repeatedly in loop-back
mode until the task is completed.

Market-based approach. Yamamoto and Leduc [21] de-
scribe a model for trading resources inside an active net-
work node, based on the interaction between a “reactive
user agent” included in the capsule, and resource manager
agents that reside in the network nodes. The manager agents
propose resources (such as link bandwidth, memory, or
CPU cycles) to the user agents at a price that varies as a
function of the demand for the resource (the higher the de-
mand, the higher the price). Capsules carry a budget that
allows them to afford resources in the active nodes. Based
on the posted price of the resources and on its remaining
credit, the user agent of a capsule makes decisions about the
processing to apply to the capsule. For instance, if the CPU
is in high demand and thus expensive to use, then a cap-
sule may decide to apply a simple compression algorithm
to its data, instead of a more efficient but more costly algo-
rithm, which the capsule would have applied if the resource
were more affordable. This approach, which might prove
appropriate for mobile agent platforms, could increase the
capsule complexity too much to be used efficiently in active
networks.

Our critique. The two most common approaches to re-
source control in active networks apply a fixed limit on the
CPU time allocated to an active packet. In one approach,
each node applies its own limit to each packet, while in the
other approach each packet carries its own limit, a limit that
might prove insufficient on some nodes a packet encounters
and overly generous on other nodes. Neither approach pro-



vides a means to establish an appropriate limit for a variety
of active packets, executing on a variety of nodes. Our re-
search aims to solve this problem, while at the same time
we aim to develop a solution that would not reduce the ex-
pressiveness of a capsule, nor make a capsule too complex.

4.2. Resource requirements need quantification

While we are unaware of any other projects aiming to
quantify the CPU requirements of an AA in a heterogeneous
network, we did survey several related research projects that
could help us to devise an effective solution. The following
sections outline and discuss some ideas we found.

Use RISC cycles? The active network architecture doc-
uments specify that a node is responsible to allocate and
schedule its resources, and more particularly the CPU time.
Calvert [5] emphasizes the need to quantify computing re-
quirements of an AA in a context where these needs can
vary greatly from one node to another, and suggests using
RISC cycles as a unit to express computing requirements.
He does not address two crucial questions. First, for a given
AA, how can a programmer evaluate the number of RISC
cycles required to execute a packet on a given node? Sec-
ond, how can this number be converted into a meaningful
unit for non-RISC machines?

Use Deus ex machina? In the AppLeS (application-
level scheduling) project [3], the programmer provides in-
formation about the application that she wishes to execute
on a distributed system. She must indicate for instance
whether the application is more communication-oriented or
computation-oriented or balanced, the type of communica-
tion (e.g., multicast or point-to-point), and the number of
floating-point operations (in millions) performed on each
data structure. Using this information, a scheduling pro-
gram produces a schedule expected to lead to the best per-
formance for the application. This method can lead to ac-
ceptable predictions only if the programmer is both willing
and able to provide the required characteristics of the pro-
gram. Discussions with software performance experts led
us to think this is rarely the case.

Use combined node-program characterization?
Saavedra-Barrera and colleagues [18] attempted to
predict the execution time of a given program on various
computers. To describe a specific computer, they used a
vector to indicate the CPU time needed to execute 102
well-defined Fortran operations. In addition, they provided
a means to analyze a Fortran program, reducing it to the
set of well-defined operations. The program execution
time can then be predicted by combining the computer
model with the program model. The approach yielded
good results for predicting the CPU time needed to execute

one specific run of a program on different computer nodes.
These results encouraged us to model platforms separately
from applications; however, we need to capture multiple
execution paths through each application, rather than a
single path. We are pursuing a separate thread of research,
not reported here, which aims to apply insights from
Saavedra-Barrera to the active-network environment.

Use acyclic path models? To measure, explain, or im-
prove program performance, a common technique is to col-
lect profile information summarizing how many times each
instruction was executed during a run. Compact and inex-
pensive to collect, this information can be used to identify
frequently executed code portions. Unfortunately, such pro-
files provide no detail on the dynamic behavior of the pro-
gram (for instance, these techniques do not capture and re-
port iterations). To solve this problem a detailed execution
trace must be produced, listing all instructions as they are
executed. But as program runs become longer, the trace
becomes larger and more difficult to manipulate. Ball and
Larus [2] propose an intermediate solution: to list only
loop-free paths, along with their number of occurrences.
Among other things, the authors demonstrate how the use of
these acyclic paths can improve the performance of branch
predictors. We might be able to exploit such algorithms to
efficiently capture looping behaviors; however, to collect
acyclic path information we would need to instrument the
program code for each application to be modeled. Given
the variety of execution environments and active applica-
tions being devised by researchers, we decided to first eval-
uate some simpler approaches.

5. NIST model for CPU usage in active net-
works

In this section, we describe our model to predict an AA’s
CPU requirements. Then we discuss how instances of our
model can be transformed to account for the capabilities of
various active-network nodes.

5.1. Model and predict application requirements

Elsewhere, we define a model to represent CPU-time us-
age of AAs as a function of the processor cycles used in
Node OS system calls, and within a specific EE between
Node OS system calls [7]. Here we simply summarize.

Our AA model consists of two parts. The first part iden-
tifies the scenarios observed in an execution trace of an AA.
We describe each scenario as a set of transitions between
system calls, and we assign a probability to the scenario, as
determined by the execution trace. The second part char-
acterizes processor cycles required by each element of a



scenario. Elements include both system calls and transi-
tions between system calls. We define each element with
a histogram to represent its CPU profile. For instance, an
element might require between 5-10 processor clock cycles
(pcc) with a probability of 0.2, between 10-15 pcc with a
probability of 0.5 and between 15-20 pcc with a probability
of 0.3.

We then use this model to predict the mean and high
percentiles1 of the CPU execution time of an AA. First, a
Monte Carlo test selects a scenario, and for each element of
the scenario (system calls and transitions), another Monte
Carlo test selects a bin in the describing histogram. The
sum gives a simulated execution time. After repeating this
process enough times, the mean and high percentiles can be
estimated.

Our previous results document the accuracy with which
these predictions hold for a single node [7]. In general, we
found standard error to range between 0 and 11 % for pre-
dicting the mean, and between 2 and 24 % for predicting
high percentiles. The following section discusses our ap-
proach to adapt our predictions to provide meaningful infor-
mation for various nodes. We also provide new results that
demonstrate how well our adapted predictions hold when
scaled across a number of nodes running the Magician EE.
In later sections, we describe the use of Magician as the
platform for the AA deployed in two experiments.

5.2. Transforming application models for interpre-
tation among heterogeneous nodes

We provide a benchmark workload so each node can cal-
ibrate itself with respect to EE performance, and with re-
spect to system-call performance [6]. From executing the
benchmark, a node obtains two vectors. The EE vector
gives the average user-mode pcc for the node to execute the
benchmark for each EE. Similarly, the system-call vector
gives the average pcc for the node to execute each Node-OS
system call. We select one node as a reference, and flood
its calibration vectors to all nodes in the network. To trans-
mit an AA model between two nodes x and y, the model is
subjected to a “Node-to-Reference transform”: the values
describing the time spent between two system calls are di-
lated or contracted using the ratio �������, where ���� is
the average pccs required by the EE to execute the calibra-
tion workload on the reference node and �� is the average
time taken by the EE to execute the calibration workload
on node x. In the same manner, we use the system-call
vectors to transform the times spent in each system call.
We then transmit the transformed model to node y, where
the model is subjected to an inverse (the ratio is ������� )

1We use the ���� , ����, ����, ���� , and ��
�� percentiles. For exam-

ple, the ��
�� percentile is the time within which 80% of the executions

complete.

Table 1. % error in predictions after scaling

“Reference-to-Node transform”. The combination of these
two transforms scales the pcc values within an AA model
from a form meaningful on node x into a form meaning-
ful on node y. Table 1 compares the effectiveness of our
approach to scale models, against a more naı̈ve approach
that scales models based solely on differences in processor
speed. The columns entitled “Avg. High Perc.” give the
average among the absolute value of the error on the ��

��,
��

��, ����, ���� and ��
�� percentiles. The three presented

applications (Ping, Route, and Audio) were running in the
Magician EE [10] (see [7] for results about ANTS AAs).
As shown in Table 1, when using our model to transform
CPU-time requirements between various pairs of nodes (in-
dividual nodes are labeled K, B, R, G, and Y), the standard
error for predicting the mean ranges between 2 and 21 %,
and for high percentiles between 10 and 32 %. This repre-
sents an increase in error over predictions made for a single
node.

6. Experiment # 1: controlling CPU usage by
mobile code

In this experiment, we compared the effectiveness of our
AA model against fixed allocation to control CPU usage by
an AA as it traverses heterogeneous nodes in an active net-
work. As shown in Figure 2, we constructed a four-node,
heterogeneous active network, consisting of sending (200



Figure 2. Topology for experiment #1

MHz Pentium2 Pro/64 Mbytes) and destination nodes (450
MHz Pentium II/128 Mbytes) separated by two intermedi-
ate nodes: one faster (333 MHz Pentium II/128 Mbytes) and
one slower (100 MHz Pentium/64 Mbytes). All nodes in-
cluded Magician [10] running on a Java�	 virtual machine
(jdk 1.2.2) supported by Linux (release 2.2.7). We config-
ured the experiment nodes to run an active audio applica-
tion. Our application data stream generated normal active
packets (Good packets in Figure 2), as well as erroneous
active packets (Malicious packets in Figure 2). The erro-
neous packets attempt to consume as much CPU time as
possible. For every five good packets the source sent a ma-
licious packet, programmed to compute in an infinite loop.
The audio application emitted a stream of 91,105 bytes, or
2278 good packets.

We conducted two experiment runs. In the first run, we
assigned fixed CPU-time (TTL in Figure 2) per packet, de-
termined by measuring the active audio application execut-
ing on the sending node. Note that this fixed time equates
to a different number of pccs on each node, depending on
processor speed. In the second run, we used the model dis-
cussed in Section 5 to assign CPU-time limits adjusted to
account for the needs of good packets running on each of
the nodes.

We expected that the malicious packets would all be
stopped on the first intermediate node, thanks to the CPU
control mechanism, and that less CPU time would be
wasted before those malicious packets are terminated. In-
deed, using our adaptive CPU-time model lowers the TTL
value, and thus reduces the CPU time stolen by malicious
packets in comparison with the fixed CPU-time allocation
approach. Table 2 gives an analysis predicting that in this
experiment our approach should lead to an average saving
of 0.5 ms per packet.

Table 3 presents the results obtained from experiments.
The improvement in average CPU usage of 0.52 ms per

2Certain commercial products or company names are identified in this
report to describe our study adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of Stan-
dards and Technology, nor is it intended to imply that the products or
names identified are necessarily the best available for the purpose.

Table 2. Expected results from the CPU con-
trol experiment

Table 3. Experimental results from the CPU
control experiment

packet is commensurate with the analytical value we com-
puted in Table 2. Figure 3 reveals the per-packet saving
by measurement interval. The per-packet saving is com-
puted by substracting the CPU utilization using our adjusted
model from the CPU utilization using a fixed TTL. Dur-
ing some intervals the adjusted model provides substantial
per-packet savings, while in other intervals the TTL per-
forms better. The per-interval results depend on the number
of malicious packets present during each measurement in-
terval. Beyond per-packet savings in CPU utilization, the
third row of Table 3 shows also that more good packets are
permitted to run to completion when we use the adjusted
CPU-time model. In effect, use of a well-scaled AA model
reduces the stolen and wasted CPU time in our heteroge-
neous active network. The same reasoning should apply in
other applications, such as applets, servlets, and scripts.

Beyond controlling CPU usage, our models can also be
used to predict CPU demands, when combined with the
Active Virtual Network Management Prediction (AVNMP)



Figure 3. CPU time saved per measurement
interval

system [4]. We address this next.

7. Predicting resource use with AVNMP

AVNMP constructs a shadow topology that overlays
an operational network and then runs a simulation in the
shadow topology to predict traffic load. Figure 4 illustrates
the relationship between the operational network and the
shadow, prediction-overlay network. Using Magician [10],
AVNMP deploys driving processes (DP) at each source
node and logical processes (LP) at each intermediate and
destination node in the topology of the operational network.
DPs and LPs are deployed as AAs within an active virtual-
overlay network (space dimension in Figure 4). Each DP
contains a model that simulates message sources, gener-
ating virtual messages that flow along links in the virtual-
overlay network, which share physical links between nodes
but remain logically isolated from operational traffic. As
virtual messages arrive, the LP updates variables in the
node’s management information base (MIB) [17]. Each LP
updates the future state of relevant MIB variables, providing
the MIB with predicted state to complement the current and
past state maintained by the operational network. After up-
dating predicted MIB variables, the LP consults the node’s
routing table and forwards incoming virtual messages on to
other LPs, if required.

The prediction-overlay network then generates and
routes simulated network traffic that attempts to run ahead
in virtual time of operational network traffic (time dimen-
sion in Figure 4). While the operational network advances
in real time, the LP in the prediction-overlay network ad-
vances in virtual time, receiving virtual messages and esti-
mating future load. Periodically, the LP compares the ac-
tual and predicted MIB values for corresponding intervals
in real and virtual time. If the values agree within an error
tolerance, then the simulation remains ahead of real time
and continues to advance. If not, then the LP rolls virtual

Figure 4. AVNMP as a prediction overlay net-
work

time back to the current real time, discarding predictions
for future MIB state, and then simulation resumes. AVNMP
contains some special processing to cancel virtual messages
that might be in transit across the prediction overlay net-
work during a rollback, but we omit these details.

8. Experiment # 2: predicting CPU usage in a
heterogeneous active network

In our second experiment, based on the same topology
shown in Figure 2, we used AVNMP to inject CPU-time
models for the active audio application into the prediction-
overlay network in order to predict CPU usage by the AA.
Figure 5 illustrates the changes made to the initial config-
uration. We set AVNMP to maintain a specified error tol-
erance between the actual and predicted CPU usage for an
AA. The prediction overlay network included AVNMP de-
ployed as an active application on each node, with a DP
injected into the source node and an LP injected into the
destination and each intermediate node. The DP included
a message model to generate virtual message traffic and a
CPU model to simulate processor use associated with each
virtual message. Each LP included a CPU model to simu-
late processor use for each arriving virtual message.

We conducted two experiment runs. In the first run the
DP and LPs predict a fixed CPU time for each virtual mes-
sage on every node. In the second run, the average CPU
time predicted for each virtual message differs on each
node. Table 4 shows the relevant experiment parameters
at each intermediate node. We assigned 7 ms per packet
for the fixed CPU-time model. This figure was obtained
by measuring the active audio application executing on the
source node. Note that 7 ms equates to a different num-
ber of pccs on each node, depending on processor speed.
When we adapt the CPU-time model to account for node
differences, the model predicts that each active audio packet
will take 3 ms on the fastest intermediate node and 16.5 ms
on the slowest intermediate node. Our hypothesis: because
an adapted model more accurately represents CPU use in
an AA, as compared against a fixed-time model, AVNMP



Figure 5. Configuration for experiment # 2

Table 4. Relevant experiment parameters for
each node

should require fewer tolerance rollbacks, and provide better
simulation look-ahead.

For both experiment runs we fixed the relative error toler-
ance at 10%, which means that AVNMP initiates tolerance
rollbacks whenever the measured CPU use (averaged over
20 messages) differs from the predicted CPU use by more
than 10%. This tolerance, computed relative to predicted
CPU use, equates to a different number of clock cycles for
each node and run. In conducting each run, the interme-
diate nodes periodically measured the cumulative tolerance
rollbacks and the virtual time. As shown in Table 4, the av-
erage measurement interval varied on each node due to the
stochastic nature of thread scheduling in Java. Table 5 and
Figures 6 and 7 compare some sample results we obtained
from our experiment runs. The results support our hypoth-
esis.

Table 5. Comparing AVNMP performance

Figure 6. Maximum look ahead

9. Future work

In this section we consider some deficiencies in our cur-
rent techniques to model CPU-time requirements, and we
speculate about a possible approach to improve the effi-
ciency of AVNMP. For both topics we discuss some indi-
cated future research.

9.1. Improved models

As explained in earlier work [7], one of the main limita-
tions of our approach is the difficulty of capturing represen-
tative behavior: our existing model assumes that all appli-
cation behavior can be measured prior to injecting a model
into network nodes, during a tracing phase. Unfortunately,
application behaviors often reflect conditions that cannot be
known before a program reaches a node. For this reason,
we need to investigate solutions to overcome the fact that
traces can misrepresent reality. One approach might be to
allow a model to evolve as it travels through the network and
gains experience. New scenarios could be added, and the
probability of execution and the distribution of the execu-
tion times could be adjusted as the application experiences
more execution paths. We also need to consider models that



Figure 7. Cumulative rollbacks

can be parameterized based on conditions at a node. For
example, to solve the problem of a loop executed an unpre-
dictable number of times, we could design a holes-model: a
complete model except for some parameters that would be
included on arrival at the node, where local conditions are
known.

Second, we might be unable to find a single model that
will fit all applications. But using active network technol-
ogy it is possible to deploy new predictors, or to extend ex-
isting predictors to process a new model introduced for a
new class of applications. Further, a given model might
be used in different ways to derive predictions. For in-
stance, predictions could result from analytical computation
or from simulation. Perhaps one predictor gives better re-
sults than another under certain conditions. If so, then it
could prove useful to continuously evaluate which of the
available co-existing models or prediction systems is the
most accurate. In this way, good predictors can be rein-
forced, and bad predictors can be de-emphasized, and the
value of predictors can be assessed independently in time
and space.

The third issue to be resolved involves error characteri-
zation. Before taking decisions based on predictions from
CPU-time models, an operating system must consider the
possible range of prediction error. We have yet to rigorously
characterize the error properties of our models. The ability
of AVNMP to maintain predictions within a specified error
bounds offsets this weakness in the prediction application
discussed in this paper.

9.2. Improved AVNMP performance

With regard to AVNMP, we demonstrated the ability to
make predictions of message load and CPU usage in a rather
small network. We have yet to investigate how shadow sim-
ulations might be scaled to larger networks with thousands
of MIB variables at each node. Our current system emulates

real applications running in a logically isolated prediction-
overlay network, which shares physical resources with the
operational network. This approach will at minimum dou-
ble the physical resources required from the operational net-
work. We might be able to discover more efficient tech-
niques to simulate future state. Such efficiency improve-
ments, which (as detailed below) are being explored in light
of recent advances in the application of Kolmogorov com-
plexity theory [12], could prove crucial when we attempt to
simultaneously predict alternative future network states. If
we can achieve this goal, then AVNMP might be used to
estimate multiple future states in a network, perhaps even
assigning a probability to each state. Given such capabil-
ity, a network manager could simultaneously explore mul-
tiple what-if scenarios and could initiate network reconfig-
urations based on the most likely or most critical expected
outcomes. But first we must address our performance con-
cerns with AVNMP.

To lower resource comsumption by AVNMP, we can
consider application of the Minimum Data Length (MDL)
[8] estimate for Kolmogorov Complexity3. Resource con-
sumption by AVNMP is tied directly to accuracy: higher
accuracy costs more in terms of bandwidth utilization, asso-
ciated with simulation rollbacks and the concomitant trans-
mission of anti-messages. Despite this relationship, poten-
tial exists to nearly reach the theoretical minimum amount
of bandwidth to achieve maximal model accuracy. This pos-
sibility arises because AVNMP consists of many small, dis-
tributed models (each a description of a theory) that work
together in an optimistic, distributed manner via message
passing (data). Each AVNMP model can be transferred,
using Active Networks, as a Streptichron [11], which is
any message that contains an executable model in addi-
tion to data. Using Streptichrons, the optimal mix of data
and model can be transmitted so as to closely approximate
the minimum MDL. Achieving maximal model accuracy at
minimal bandwidth would provide the best accuracy at the
least cost in resource consumption.

Other possibilities exist to exploit Kolmogorov Com-
plexity to improve AVNMP performance. For example, one
can apply the MDL technique to the rollback frequency of
all the AVNMP enhanced nodes in a network. A low roll-
back complexity (which suggests a high compressibility in
the observed data) would indicate patterns in the rollback
behavior that could be corrected relatively easily by tun-
ing AVNMP parameters. High complexity (low compress-
ibility) would indicate a lack of computable patterns, and
would suggest that little performance improvement could
be achieved by simply tuning parameters. Thus, we hy-

3The Minimum Data Length (MDL) estimate for Kolmogorov Com-
plexity proposes that the best measure for complexity of an information
unit minimizes the sum of the length, in bits, of the description of a theory
that produces the unit, and the length, in bits, of the unit encoded using the
theory.



pothesize that our tuning gradient should be guided toward
regions of high complexity. As our research into the study
of complexity, particularly Kolmogorov Complexity, pro-
ceeds, we hope to apply insights such as this to improve
AVNMP performance specifically, and to assist in automat-
ing network management generally.

10. Conclusions

We outlined the importance of accurate models for pre-
dicting CPU usage by mobile code in heterogeneous net-
works. We described one possible model. We showed
that transforming such models among heterogeneous nodes
must account for a variety of factors. We experimented
with our model in two different applications: control and
prediction. We demonstrated that the model provides im-
provements over fixed-time schemes, and we argued that the
model provides significant improvements over transforma-
tion approaches that consider only the relative differences
among processor speeds. Further, we discussed some of the
limitations of our current work, and related future research
ideas.

Acknowledgments. The work reported in this paper was
founded jointly by the National Institute of Standards and
Technology (NIST) and the Defense Advanced Research
Projects Agency (DARPA). We thank particularly Doug
Maughan, DARPA’s Active Networks program manager.

References

[1] D. S. Alexander, P. B. Menage, A. D. Keromytis, W. A. Ar-
baugh, K. G. Anagnostakis, and J. M. Smith. The price
of safety in an active network. Journal of Computers and
Networks, Special Issue on Programmable Switches and
Routers, March 2001.

[2] T. Ball and J. R. Larus. Using paths to measure, explain, and
enhance program behavior. IEEE Computer, July 2000.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. In Supercomputing ’96, September 1996.

[4] S. F. Bush and A. B. Kulkarni. Active Networks and Active
Virtual Network Management Prediction: A Proactive Man-
agement Framework. Kluwer Academic/Plenum, Boston,
March 2001. ISBN 0-306-46560-4.

[5] K. L. Calvert. Architectural framework for active networks,
version 1.0, draft. http://www.dcs.uky.edu/�calvert/arch-
latest.ps, July 1999.

[6] Y. Carlinet, V. Galtier, K. Mills, S. Leigh, and A. Rukhin.
Calibrating an active network node. In Proceedings of the
2nd International Workshop on Active Middleware Services,
pages 115–125, August 2000.

[7] V. Galtier, K. L. Mills, Y. Carlinet, S. D. Leigh, and
A. Rukhin. Expressing meaningful processing requirements

among heterogeneous nodes in an active network. In Pro-
ceedings of the Second International Workshop on Software
and Performance, pages 20–28, September 2000.

[8] Q. Gao, M. Li, and P. M. Vitanyi. Applying mdl to learning
best model granularity. arXiv:physics/0005062, May 2000.

[9] O. J. Huber and L. Toutain. Mobile agents in active net-
works. In ECOOP’97 Workshop on Mobile Object Systems,
June 1997.

[10] A. Kulkarni, G. J. Minden, R. Hill, Y. Wijata, S. Sheth,
H. Pindi, F. Wahhab, A. Gopinath, and A. Nagarajan. Im-
plementation of a prototype active network. In Proceedings
OPENARCH ’98, 1998.

[11] A. B. Kulkarni and S. F. Bush. Active network manage-
ment, kolmogorov complexity, and streptichrons. Technical
Report 2000CRD17, GE-CRD, 2000.

[12] M. Li and P. Vitanyi. Introduction to Kolmogorov Complex-
ity and its Applications. Springer-Verlag, August 1993.

[13] J. T. Moore, M. Hicks, and S. Nettles. Practical pro-
grammable packets. In IEEE InfoCom 2001, April 2001.

[14] L. Peterson. Nodeos interface specification.
http://www.dcs.uky.edu/�calvert/nodeos-latest.ps, Jan-
uary 2000.

[15] X. Qie, A. Bavier, L. Peterson, and S. Karlin. Schedul-
ing computations on a software-based router. In Sigmetrics
2001, June 2001.

[16] J. Reynolds and J. Postel. Rfc 1700 assigned numbers, Oc-
tober 1994.

[17] M. T. Rose. The Simple Book: An Introduction to the Man-
agement of TCP/IP Based Internets. Prentice-Hall, 1991.

[18] R. H. Saavedra-Barrera, A. J. Smith, and E. Miya. Ma-
chine characterization based on an abstract high-level lan-
guage machine. IEEE Transactions on Computers, Decem-
ber 1989.

[19] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active networks
research. IEEE Communications Magazine, 35(1):80–86,
1997.

[20] D. Wetherall, J. Guttag, and D. Tennehouse. Ants: Network
services without the red tape. IEEE Computer, pages 42–48,
April 1999.

[21] L. Yamamoto and G. Leduc. An agent-inspired active net-
work resource trading model applied to congestion control.
In MATA 2000, pages 151–169, September 2000.


